Imbalanced effector and regulatory cytokine responses may underlie mycobacterial immune restoration disease
نویسندگان
چکیده
BACKGROUND Immune restoration disease (IRD) is an adverse consequence of antiretroviral therapy, where the restored pathogen-specific response causes immunopathology. Mycobacteria are the pathogens that most frequently provoke IRD and mycobacterial IRD is a common cause of morbidity in HIV-infected patients co-infected with mycobacteria. We hypothesised that the excessive effector immune response in mycobacterial IRD reflects impaired regulation by IL-10. RESULTS We studied two patients who experienced mycobacterial IRD during ART. One patient developed a second episode of IRD with distinct clinical characteristics. Findings were compared with patients 'at risk' of developing IRD who had uneventful immune recovery. Peripheral blood mononuclear cells (PBMC) from all subjects were stimulated with mycobacterial antigens in the form of purified protein derivative (PPD). Supernatants were assayed for IFNgamma and IL-10. In response to PPD, PBMC from IRD patients generated IFNgamma during the first IRD episode, whilst cells from non-IRD controls produced more IL-10. CONCLUSION We present preliminary data from two HIV-infected patients showing an imbalance between IFNgamma and IL-10 responses to mycobacterial antigens during mycobacterial IRD. Our findings suggest that imbalanced effector and regulatory cytokine responses should be investigated as a cause of IRD.
منابع مشابه
بررسی اثر تماس مستقیم سلولهایT بکر با سلولهای فیبروبلاست تحریک شده با BCG بر القای سلولهایT تنظیمی
Background: Lymph node stromal fibroblasts are interconnected with TCD4+ cells and affect their phenotype and function. Understanding the nature of these interactions under unusual conditions like infections will help to their application in control and regulation of immune responses. Materials and methods: Lymph node fibroblasts were affected in BCG primed immune environment by both in-...
متن کاملRegulatory T Cells and Human Disease
The main function of our immune system is to protect us from invading pathogens and microorganisms by destroying infected cells, while minimizing collateral damage to tissues. In order to maintain this balance between immunity and tolerance, current understanding of the immune system attributes a major role to regulatory T cells (Tregs) in controlling both immunity and tolerance. Various subset...
متن کاملStrong Immune Responses Induced by a DNA Vaccine Containing HPV16 Truncated E7 C-terminal Linked to HSP70 Gene
Background: Vaccines capable of controlling tumor virus based infections are found difficult to develop due to the consistence latent infection in the host. DNA vaccines are attractive tools for the development of HPV vaccines and inducing antigen-specific immunity owing to the stability, simplicity of delivery, safety and cost effectiveness. However, there is a need to increase their potency b...
متن کاملسلولهای T تنظیمی: انواع، تولید و عملکرد
T lymphocytes have been characterized to different subsets such as cytotoxic T, Thelper1 (Th1), Th2, Th3, Th9, Th17, and regulatory T cells. Each of these subsets have specific function which distinct them from other lymphocytes. Regulatory T lymphocytes are effective cells in immune system that play an important role in cancers, autoimmune and infectious diseases. Two main subsets of regulator...
متن کاملTreating atherosclerosis with regulatory T cells.
Regulatory T cells (Tregs) play an important role in the regulation of T-cell-mediated immune responses through suppression of T-cell proliferation and secretion of inhibitory cytokines, such as interleukin-10 and transforming growth factor-β. Impaired Treg numbers and function have been associated with numerous diseases, and an imbalance between proinflammatory/proatherogenic cells and Tregs p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AIDS Research and Therapy
دوره 5 شماره
صفحات -
تاریخ انتشار 2008